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RANGE RESIDUATED MAPPINGS

M. F. Janowitz

I. Introduction. A digital picture may be thought of as a mapping

d:X L where X is a finite set and L a finite chain or the cartesian

product of finitely many such chains. The idea is that X is of the form

S x T, where S is the set consisting of the first s, and T the set

consisting of the first t positive integers, while L represents the

numerical coding of the brightness settings of the color guns that produce

the picture. For a monochromatic picture, there would be only a single

gun, so that L would be a chain. Thus d(x) yields the color or inten-

sity level at site x. The mapping d produces a clustering of X into

disjoint subsets by the rule

Ah = {x c X:d(x) = h} (h , L)

It is sometimes convenient to think instead of the clusters

Bh = {x ' X:d(x) < h) (h, L)

and note that this produces a situation quite analogous to the model for

cluster analysis that was described in [2]. In order to demonstrate an

essential difference between the two situations, it turn~s out to be useful

to examine in some detail the nature of the earlier model. One is given

a finite (nonempty) set X and a dissimilarity measure on X. This is a

mapping d:X x X L, where L denotes the nonnegative reals and d

satisfies o,.

Research supported by ONR Contract N-00014-79-C-0629



2.

(DCl) d(a,b) = d(b,a)

(DC2) d(a,a) = 0

for all a,b , X. One associates with d a numerically stratified clustering

Td:L - P(X x X) defined by the rule

Td(h) = {(a,b):d(a,b) < h (h L).

The mapping Td:L . P(X x X) turns out to be residual in the sense of [1],

p. 11. This situation may then be generalized by taking L to be a join

semilattice with 0, replacing P(X x X) with a bounded poset M, and

defining an L-stratified clustering to be a residual mapping C:L - M as

in [2], p. 61. It is useful to recall here that C:L - M is residual if

C is isotone and there exists an isotone mapping C*:M - L such that

(1) C*C(h) < h

(2) CC*(m) > m

for all m M1, h L. The mapping C* is called the residuated maDoin_-

associated with C, and the reader is referred to [1] for further details.

One often wishes to take a residual mapping C:L - M and shift the output

levels by means of a mapping O:L - L. The only reasonable choice for such

a , is to take e to be residual since one is then guaranteed that

C ,,:L - M is residual. Now this treats the 0 element of L as a dis-

tinguished element, since 0*(0) = 0 for every residuated mapping * on L

L. This makes sense in the cluster analysis context, since d(a,b) = 0 is

generally taken to mean that a,b cannot be distinguished in terms of the

given input data.
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In the context of digital images, one does not wish to distinguish the

0 element of L in the above manner. In order to avoid this, it becomes

necessary to modify the notion of an L-stratified clustering. Specifically,

we shall drop the requirement that M have a least element and consider

mappings C*:M - L that are residuated when considered as mappings from

M into the order filter generated by their range. Thus there exists an

isotone mapping C:F -M, where F denotes the aforementioned order filter,

and C,C* are linked by the requirement that

(3) CC*(m) > m for all m E M

(4) C*C(h) < h provided h > some C*(m) for m M.

By [1], Theorem 2.5, p. 10, this amounts to saying that the preimage under

C* of a principal ideal of L is either empty or itself a principal ideal

of L. To be more specific, if we are to work with a digital picture, we

are qiven a finite nonempty set X and a mapping d:X -> L. If P'(X) denotes

the semilattice formed by the nonempty subsets of X, then d may be

extended to a mapping d*:P'(X) - L by the rule

(5) d*(A) = v{d(x):x, A}

for every nonempty subset A of X. It is then easy to see that d* is

residuated on the order filter generated by its range. Such mappings will

henceforth be called range-residuated. They have already been used in [31

in connection with an investigation of ordinal filters in diqital imaqery,

and in [4] in connection with a characterization of the semilattice of weak

orders on a finite set. We agree to let RR(P,,) denote the collection

of range-residuated mappings of the poset P into the poset 0, and



4.

RR+(Q,P) the associated collection of residual mappings from order filters

of 0 into P. In case P = Q, we shal' use RR(P) and RR+(P) in

place of RR(P,P) or RR +(P,P). If P is a finite chain then RR(P) is

nothing more than the set of all isotone mappings on P, while if P is

a finite join semilattice, then RR(P) conissts of the join endomorphisms

of P. If digital pictures are thought of as elements C of RR+(L,M),

and if L is a finite chain, this shows that the levels of C may be

shifted by means of any isotone mapping 1 on L to produce a new pic-

ture C RR +((L,M). In view of all this, we now embark on an inves-

tigation into order theoretic properties of these mappings.

2. Range-Residuated Mappings. Let P,Q be Dosets each havina a

largest element 1. For each g , the constant mapping K :P - 0

defined by Kq(x) 
= q for all x P is range-residuated, with + given

q q

by K+(y) = 1 for all y > q. If Q happens to be a join semilattice,q p
then the join translation Tq (x) = x v q is in RR(Q) with '1(y) = y

for all y > q. Before proceeding, let us develop some elementary proper-

ties of range-residuated mappings. They are basically generalizations of

results on residuated mappings, but are included here for completeness.

THEOREM I (see [1], Theorem 2.8, p.14). Let P,Q,S be posets.

RR(P,Q) and i, RR(Q,S). Then ,ij:P - R is range-residuated with
( ,) + + +

Proof: Evidently .":P - R is isotone. If p P, then I(p) is in

the domain of i,+, so that '4,(p) > t(p) and we have
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, P> >+(P) > p. On the other hand, if s > pk(P), then +(s) > '(p)

puts , (s) in the domain of +. Thus + +(s) can be formed and

< 40 $O+(r) < r. In that the domain of o if+ is precisely the order

filter generated by the range of 44 , this completes the proof.

COROLLARY 2. RR(P) forms a semigroup with identity.

Proof: The identity map acts as a multiplicative identity element for

RR(P).

Assuming that mappings are written on the left, we also have

COROLLARY 3. RR(P) has a left (but not right) zero element.

Proof: Let x ( p and RR(P). One simply notes that

Kx = p (x) and KX = Kx,

so that K is a left (but not right) zero element for RR(P).x

It is easy to show that any left zero element of RR(P) is of the form

- for some x E P. Of special interest is the case where P is bounded

and one works with K0 .

If :P - Q is a residuated mapping with associated residual mapping

:Q P, and if both P and Q are equipped with their dual orderings,

then + becomes residuated with its associated residual mapping. This

leads to an obvious duality between residuated and residual mappings. This

duality does not carry over to range-residuated mappings since RR(P,Q)
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has an associated residual mapping whose domain is an order filter of Q

rather than being all of Q. Bearing this in mind, we agree to say (as in

[4]) that - RR(P,O) is range-closed if (a) < q < (p) implies

q , range @; to say that 4 is dually range-closed will be to say that

the range of 0+ is an order filter of P. An obvious modification of

the proof of [1], Theorem 13.1, p. 119 now produces

THEOREM 4. Let P,Q be bounded posets. For . RR(P,Q), the
followinj are equivalent:

(1) is range-closed.

(2) The restriction of to [q +>(O), 1] is a surjection onto

[,P(0), W()].

(3) In the interval [ (O), 1] of Q, q A 4(l) exists and equals

+++(q)-

(4) + is injective.

Similarly, an obvious modification of the proof of [1], Theorem 13.1*,

p. 119 would produce

THEOREM 5. Let P,Q be bounded posets. For , RR(P,Q), the

following are ecqyuivalent:

(1) ¢ is dualjy ran e-closed.
+ f

(2) , is a surjection onto [4 +, (O), 1].

(3) For a-ll p P, p v ,+ (O) exists and equals q+ (p).

(4) The restriction of ¢ to [ +, (O), 1] is injective.
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As in [1], p. 120, we also agree to call $ RR(P,Q) weakly regular

in case 4 is both range-closed and dually range-closed. Examples of

such mappings are provided by the constant mappings K as well as by the
x

join translations TX. The analog of [1], Theorem 13.2, p. 121 may now

be stated as

THEOREM 6. Let P,Q be bounded posets.

(1) If E RR(P,Q) is weakly regular, then its restriction to

[.+(O), 1] is an isomorphism onto [4(O), 4(1)]; furthermore, for p , P

++
and q > @p(0), we have that p v 4)+4(0) exists and is given b_ ; ()

and that q A c(I) exists in [(O), 1] and is giv2en y 4)+(q).

(2) Let a ( P and b,c E 0 with b < c. Suppose that p v a exists

for all p c P, that q A c exists for all q > b in Q, and that T is

an isomorphism of [a,l] onto [b,c]. If 4:P - Q is defined by

4f(P) = T(p v a), then 4) RR(P,Q), 4 is weakly regular, and + is

liven by 4+(q) = .-l(q A c) for q > b.iI
Recall now that a pair (a,b) of elements of a lattice is modular and

denoted M(a,b) if x < b implies that x v (a A b) = (x v a) A b; dually,

a dual modular pair is denoted M*(a,b) and signifies that x > b implies

X A (a v b) = (x A a) v b. le then have

THEOREM 7. Let P be a bounded lattice and 4 RR(P) a range-closed

idempotent. Then M(p+0(O), 0(l)) holds.

Proof: Let a = 4+(O) and b = 4 (I). If a A b x < b, then x 4)(y)

for some y - a by Theorem 4. Hence
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x + ++(x) > +(x v a) - (x v a) A b > x

shows x (x v a) A b. In general, if x < b, then a A b < x v (a A b) < b

shows that

x v (a A b) = [x v (a A b) v a] A b = (x v a) A b,

whence M(a,b).

Dually, we have

THEOREM 8. Let P be a bounded lattice and 4 E RR(P,Q) a dual range-

closed idempotent. Then M*(O(1), 4+) (O)), and 1 = (l) v 4+ (0).

Combining Theorems 7 and 8, we generalize [1], Theorem 13.4, p. 123.

THEOREM 9. Let P be a lattice and c RR(P). The following are

necessary and sufficient conditions for to be a weakly regular idempotent:

(1) 4+ 0(o) v () = 1

(2) M(¢+¢(O), ¢(l)) and M*(0(l), 0+0(0))

(3) O(x) = [x v 0 + 0(0)] A 0(l).

Proof: Let a v b = 1, M(a,b) and M*(b,a). Define 0 and £ by

O(x) (x v a) A b (x E p)

(x) (x A b) v a (x > a A b).

Then

,/p (x) :[(x v a) A b] v a = x v a > x

II

1
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and for x > a A b,

4,(x) [(x A b) v a] A b

= (x A b) v (a A b) X A b < x.

Thus E RR(P) with p = . The fact that 4 is a weakly regular idem-

potent is now also clear. For the converse, apply Theorems 7 and 8.

Continuing along these lines, we say that a range-residuated mapping

RR(P,Q) is totally ranqe-closed if the image under of a principal

ideal of P is necessarily a convex subset of Q. We then have

THEOREM 10 (See [1], Theorem 13.5, p. 124). Let P be a bounded lattice.

The following conditions on a element of RR(P) are then equivalent:

(1) 0 is totally range-closed.

(2) rane-closed implies o4 range-closed for every c E RR(P).

(3) For x > (O), y E L, [ +(x) A y] = X A 4(y).

Proof: (1) => (2) is clear.

(2) - > (3) If x > @(O), choose a residuated mapping zp, on P

so that q)(1) = y. Then 44 is range-closed, and we note that

[O+(x) A y] = W++(x) = (#)(4w)+(x) x A (1) X A (y).

The fact that p(O) = 0 was used to guarantee that + + (x) could be

L formed.

(3) > (1) Let b c P. We are to show that ([O,b]) = [(O), (b)1.

But if 0(0) < x < O(b), then by (3),

x = O(b) A x = 4[b A (x)].

I
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If we agree to call ' RR(P,Q) dual totally range-closed in case

the image under 0+ of a principal filter of the domain of + is a

principal filter of P, we then have

THEOREM 11. Let P be a bounded lattice, and ' RR(P). The

following are then equivalent:

(1) ' is dual totally rane-closed.

(2) p dual range-closed implies 0' dual range-closed.

(3) For y > '(0), x c L, +[ (x) v y] = x v '+ (y).

The above is the obvious generalization of [1], Theorem 13.6, p. 124, and

its proof will be omitted.

As in the case of residuated mappings, there is a strong tie between

the notions of range-closed and modularity. A further discussion of this

topic will be covered in a later paper.

3. Annihilator Properties of Range-Residuated Mappings. In this

section, it will be assumed that we are working in a fixed bounded poset P.

Recall that RR(P) is a semigroup with identity element 1 and left zero

elements {Kx:x , P). The left zero element K0 will be of special interest.

For ,p RR(P), we define the right annihilator of o by the rule

R(4) = {q':'p' K I,(O) ;

similarly, the left annihilator of ' is defined by

We shall make strong use of the fact that
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(5) Kw: () <-> W( ) < +mW).-

The idea now is to relate order properties of the poset P to annihilator

properties of the semigroup RR(P). To show that there is some hope in

doing this, we let

R = {R(q): E RR(P)}

L = {L(O): E RR(P)}

with both sets partially ordered by set inclusion. We may then define

mappings F:R - P, G:L - P by the rules

F(R( )) = 0+0(0)

G(L = ()

and note that F is an isomorphism of R onto P, and G is a dual iso-

morphism of L onto P. To see this, note first that if R( ) _ R(u), then

t + (o) = K (o) = > K+,(o Kam
+ ++

so that by (5), +() ( + cL(O). If conversely, q+ (O) < , +x(O), then

= K0()-> (l) < +( ° ) < ct +c(O) -
> Ct = K (o)" So R( ) -R(v).

We would be done if we could show F to be onto. But this follows from

the observation that if x is defined by x (p) = 0 if p < x and 1x

otherwise, then is residuated with x+x (0) = x. A similar argument
x~ x x

works for G. We now have

THEOREM 12. Let P be a bounded poset. Then:

(1) P is a meet semilattice if and only if the right annihilator of

each element of RR(P) is a principal right ideal generated t an idempotent.

J
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(2) P is a join semilattice if and only if the left annihilator of

each element of RR(P) is a principal left ideal generated b_ an idempotent.

Proof: (1) Assume P to be a meet semilattice. Then for p c P, we may
S

define 0 p by the rule 0 p(X) = x (x < p) and p otherwise. Noting that

Ap is a range-closed idempotent residuated mapping, it follows from (5)

that pp' = K (O) <----> = %+( 0 ). The converse follows from Theorem 4.

(2) If P is a join semilattice, then by (5), <-> = (0 ) <

= I,(1 ). The converse follows from Theorem 5.

4. Baer LZ-semigroups. Let S be a semigroup with a two-sided zero

element 0. For a given x E S, define the left and right annihilators of

x by the rules

L(x) = {y c S:yx = 0}

R(x) = fy r S:xy = 0}.

To say that S is a Baer semigroup ([l], p. 104) is to say that for each

x , S there correspond idempotents ex, fx such that

L(x) = {y c S:y = yfxI = Sf

R(x) = fy c S:y = ex y = exS.

An introduction to these semigroups is contained in [1], and an attempt is

made there to relate properties of bounded posets to properties of suitable

associated semigroups. For further details, the reader is referred to

[1]. The link between Baer semigroups and lattices is made by means of

certain residuated mappings. In order to develop a similar theory for

. . . . . . . . . .. . .. . . . - . . . . . . . . . . I I I " i i m m m - .
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range-residuated mappings, one needs an analog of a Baer semigroup that

only has a one-sided zero element. This -i now proceed to introduce.

DEFINITION. A semigroup S is said to be a Baer LZ-semigroup if

(1) S has a distinguished left zero element z, and

(2) For each x E S, there correspond idempotents e f such

that

L(x) ={y c S:yx = yz} = {y c S:y = yfx} ,

R(x) = {w t S:xw = xz} = {w c S:w = ex W.

Unless otherwise specified, S will denote such a semigroup, and

L(S) = {L(x):x E S}

R(S) = {R(x):x c SI

with both L(S) and R(S) partially ordered by set inclusion. To say

that a poset P can be coordinatized by such an S will be to say that

P is isomorphic to R(S). Nlote that if z is a two-sided 0, then S

becomes a Baer semigroup in the sense of [1], p. 104. Note also that the

left zero elements of S correspond to the elements of the form xz (x S S).

THEOREM 13. S has a multiplicative identity.

Proof: Let L(z) = Se and R(z) = fS with e, f idempotent. Then

R(z) = fy S:zy = zzJ= S shows f to be a right identity for S, while

L(z) = fy c S:yz = yzl = S shows e to be a left identity.
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If we agree to let PRI(S), PLI(S) denote the set of principal right,

left ideals of S with both sets partially ordered by set inclusion, we

also have

THEOREM 14. (1) The mappings L:PRI(S) - PLI(S), R:PLI(S) *+ PRI(S)

defined by L(xS) = L(x), R(Sx) = R(x) set up a galois connection in the

sense of [1], p. 18.

(2) L= L oR o L and R= o L oR.

(3) xS c R(S) <=> xS = (R o L)(x), and

Sx c L(S) < > Sx = (L o R)(x).

(4) The restriction of L to R(S) is a dual isomorphism of R(S)

onto L(S) whose inverse is the restriction of R to L(S).

Proof: In view of the similarity of this result to [1], Theorem 11.1, p. 95,

we restrict our attention to the proof of (1).

If xS c yS, then x = yw for some w E S. Then a E L(y) implies

ay = az, so ax = ayw = azw = ax. Thus

xS c yS -> L(y) c L(x).

Similarly, if Sx c Sy, then x = wy, so a c R(y) implies xa = wya

wyz = xz, thereby putting a c R(x). In other words,

Sx c Sy > R(y) c R(x).

The fact that a c L(x) implies ax = az also puts x E R(a), so

xS c (R o L)(xS); similarly, Sx c (L o R)(Sx), thus completing the proof.

Ik.__ _ _ _ _ _ _ _ _
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We shall frequently need

2
LEMMA 15. If eSER(S) with e = e then z = ez.

Proof: Let eS = R(x). Since z E R(x), it follows that z = ez.

For M a subset of S, we agree to let R(M) = {x:mx = mz for all

m E M) and note that if R(M) = eS with e = e2 , then eS = A {R(m):m E M)

in R(S). For each fixed x E S, we define mappings Fxqx:R - R by the

rules

x(eS) = (R - L)(xe)

nx(eS) = R(e#x)

where Se# = L(e), and e#  is idempotent. The domain of n is taken to

be {eS c R(S):x (zS) c eSI. From here on in, the elements e,f,g,h

(with or without superscripts) will, unless otherwise specified, denote

idempotents. We agree further to let R = R(S) and L = L(S). We then

have

THEOREM 16. For each x c S, x c RR(R), with =nx

Proof: We begin by showing 4xq ix to be well defined and isotone. Ac-

cordingly, let eS c fS in R. Then e = fe and y c L(xf) implies

yxe yxfe = yze = yz

thus showing y E L(xe). It follows that x is well defined and isotone.
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Now let @x(zS) c eS c fS in R, with Se# L(e) and Sf# : L(f).

Then L(f) c L(e), so f = f#e# If y E R(e x), then e xy = e xz,

and then

f#xy = f#e#xy - f#e#xz = f#xz,

thus putting y c R(f#x). Consequently, nx  is well defined and isotone.

Suppose now that 4x (eS) c fS in R. Then 4x (zS) c fS, so xz = fxz,

and f#xz = f#fxz = f#Z. It follows that

f#xe = f#fxe = f#z = f#xz,

whence eS c R(f#x). On the other hand, if 4x (zS) c fS, and eS E R(f#x),

then

f#xe : f#xz = f#z

puts xe in R(Sf) = (R o )(fS), so (eS) = (R o L)(xe) c fS. This
+

shows that ix + as claimed.
xS

Actually as is seen by the next result, L = R(S) is in fact a bounded

lattice. The proof is similar to that of (1), Theorem 12.2, p. 107.

LEMMA 17. L = R(S) is a bounded lattice.

Proof: Let eS, fS E L with Se# = L(e), and Sf# = L(f). If gS = R(f#e),

then 9

(f#e)(eg) = f#eg = f#ez

shows eg c R(f#e) = gS, so eg = geg and eg is idempotent. Now let 0

x r R({e#,f#}). Then

9
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2#x e#z > x = ex,

so

f#ex f#x f#z = f#ez

puts x E R(f#e) gS, and x = gx = egx.

If conversely, x = egx, then

e = e #egx = e# z

f#x = f#egx = f#ez = f#Z

puts x R({e #,f#}). It is immediate that eS n fS = egS E L, and this

shows L to be a meet semilattice.

In order to show that L is a join semilattice, it suffices by Theorem 14

to show that L(S) is a meet semilattice. Accordingly, we let Se, Sf E L(S)

with e'S = R(e), f'S = R(f), and Sg = L(ef'). We shall show that

Sf n Se = Sg n Se = Sge. Note first that

(ge)(ef') = gef' = gz.

By Lemma 15,

gez = gef'z = gz,

so (ge)(ef') = gz = gez, and ge E L(ef') = Sg. It follows that ge = geg,

so ge is idempotent.

If x E L({e',f'}) then xe' = xz, so x = xe. It follows that

xef' = xf' = xz, and x xg. Consequently, x = xg xge. On the other

hand, if x = xge, then
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xe' xgee' = xgez = xz,

so x E L(e'). Also, a second application of Lemma 15 produces

xf' = xgef' = xgz = xgez = xz

thus showing that x E L(f').

An immediate consequence of Theorem 12 and Lemma 17 is

THEOREM 18. For a bounded poset P, the following conditions are

equivalent:

(1) P is a lattice.

(2) RR(P) is a Baer LZ-semigroup.

(3) P can be coordinatized by a Baer LZ-semigroup.

The question of what it means for the mapping x x to be a semi-

group homomorphism of S into RR(R(S)) is settled by

THEOREM 19. Let S be a Baer LZ-semigroup, and L = R(S). The

following conditions are then equivalent:

(1) The mapping x - Ox is a semigroup homomorphism of S into

RR(L).

(2) c (zS) < 0 (zS) for every x,y in S.x xy

(3) a r L(xyz) => ax E L(yz) for all x,y in S.

Proof: (1) => (2) is clear.

(2) => (3). Let a E L(xyz). By hypothesis, ox(zS) .xy(ZS), so

L(xyz) - L(xz). Thus a E L(xyz) => a c L(xz), whence axz = az. But then

axyz = az = axz puts ax L(yz), as claimed.
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(3) -- > (1). For eS L, xy (eS) = (R o L)(xg), where gS =

(R a L)(ye), and xy(eS) (R o L)(xye). We would be done if we could

show that L(xg) = L(xye). To see this, note that

a E L(xg) => ax c L(g) = L(ye).

Thus

az axz = axg = axye,

and this puts a c L(xye). The reverse inclusion is established in a

similar manner.
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